IE 2 (information extraction) - перевод на Английский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

IE 2 (information extraction) - перевод на Английский

AUTOMATICALLY EXTRACTING STRUCTURED INFORMATION FROM UN- OR SEMI-STRUCTURED MACHINE-READABLE DOCUMENTS, SUCH AS HUMAN LANGUAGE TEXTS
Information Extraction

IE2 (information extraction)      
= extracción de información (EI)
Ex: Information extraction (IE) may be defined as the activity of extracting information about a pre-specified set of entities, relations or events from natural language texts and to record this information in structured representations called templates.
tooth extraction         
  • A dental x-ray image (radiograph) showing the shape and number of roots of the molars which cannot be observed in the mouth directly.
  • Dental extraction forceps.
  • Dental extraction forceps commonly used on teeth in the maxillary arch
  • Dental luxators.
  • Alveolar osteitis of a socket after tooth extraction. Note lack of blood clot in socket and exposed alveolar bone.
  • alt=
  • Recovery of swelling and bruises over time
  • Molar cut up during surgical extraction - the curvature of the three roots (top right) prevented simple extraction
  • Extracted tooth
  •  Example of post-operative swelling following third molar (wisdom teeth) extractions.
  • T-AH-19}}, speaking to his patient through an interpreter, informs her about the injection he is giving.
OPERATION (USUALLY BY A DENTIST OR ORAL SURGEON) TO REMOVE A TOOTH
Odontectomy; Exodontia; Extraction (dental); Tooth pulling; Antral communication; Forceps extraction of tooth; Surgical removal of tooth; Tooth extractor; Tooth extraction; Taking teeth out; Tooth removal
extracción de una muela (sacar una muela de la boca)
two         
  • Two schoolboys in [[Chittagong]], [[Bangladesh]]
NATURAL NUMBER
Number 2; Two-ness; 2 (the number); Two; Secondly; ₂; ٢; ۲; Even prime; Numero dos; 2; Oddest prime; Two (number); Square root of 4; ២; ➋; ➁; ❷; The number 2; 2^1; The 2; 𐡙; ꩒; ༢; TWO; ௨; २; ২; ੨; ૨; ୨; ౨; ೨; ൨; ߂; ໒; ၂; ႒; ꧒; ᥈; 𐒢; ꣒; 2 (glyph); (II); Brace (hunting); 2 (number); 2️⃣; ASCII 50; \x32; U+0032; Smallest known prime number; Draft:Two; 2¹; 2**1; 1B1; 1 B1
dos
two time: traicionar
poner los cuernos
engañar

Определение

dita
sust. fem.
1) Persona o efecto que se señala como garantía de un pago.
2) América. Deuda, obligación de pagar, satisfacer o reintegrar a otro una cosa, por lo común dinero.
3) Andalucía. Préstamo a elevado interés, pagadero por días con el capital.
sust. fem.
Puerto Rico. Vasija hecha de la segunda corteza del coco o de la corteza del higuero.

Википедия

Information extraction

Information extraction (IE) is the task of automatically extracting structured information from unstructured and/or semi-structured machine-readable documents and other electronically represented sources. In most of the cases this activity concerns processing human language texts by means of natural language processing (NLP). Recent activities in multimedia document processing like automatic annotation and content extraction out of images/audio/video/documents could be seen as information extraction

Due to the difficulty of the problem, current approaches to IE (as of 2010) focus on narrowly restricted domains. An example is the extraction from newswire reports of corporate mergers, such as denoted by the formal relation:

M e r g e r B e t w e e n ( c o m p a n y 1 , c o m p a n y 2 , d a t e ) {\displaystyle \mathrm {MergerBetween} (company_{1},company_{2},date)} ,

from an online news sentence such as:

"Yesterday, New York based Foo Inc. announced their acquisition of Bar Corp."

A broad goal of IE is to allow computation to be done on the previously unstructured data. A more specific goal is to allow logical reasoning to draw inferences based on the logical content of the input data. Structured data is semantically well-defined data from a chosen target domain, interpreted with respect to category and context.

Information extraction is the part of a greater puzzle which deals with the problem of devising automatic methods for text management, beyond its transmission, storage and display. The discipline of information retrieval (IR) has developed automatic methods, typically of a statistical flavor, for indexing large document collections and classifying documents. Another complementary approach is that of natural language processing (NLP) which has solved the problem of modelling human language processing with considerable success when taking into account the magnitude of the task. In terms of both difficulty and emphasis, IE deals with tasks in between both IR and NLP. In terms of input, IE assumes the existence of a set of documents in which each document follows a template, i.e. describes one or more entities or events in a manner that is similar to those in other documents but differing in the details. An example, consider a group of newswire articles on Latin American terrorism with each article presumed to be based upon one or more terroristic acts. We also define for any given IE task a template, which is a(or a set of) case frame(s) to hold the information contained in a single document. For the terrorism example, a template would have slots corresponding to the perpetrator, victim, and weapon of the terroristic act, and the date on which the event happened. An IE system for this problem is required to “understand” an attack article only enough to find data corresponding to the slots in this template.